【哈利森(Harrison)等离子技术分享】真空等离子课堂

等离子喷涂设备的工作原理

等离子喷涂设备的工作原理

   等离子喷涂:包括大气等离子喷涂,保护气氛等离子喷涂,真空等离子喷涂和水稳等离子喷涂。

   等粒子喷涂技术是继火焰喷涂之后大力发展起来的一种新型多用途的精密喷涂方法,它具有:①超高温特性,便于进行高熔点材料的喷涂。②喷射粒子的速度高,涂层致密,粘结强度高。③由于使用惰性气体作为工作气体,所以喷涂材料不易氧化。

<1>等离子的形成(以N2为例):
0°k时,N2分子的两个原子程哑铃形,仅在x,y,z方向上平动;
大于10°k时,开始旋转运动;大于10000°k时,原子间产生振动,分子与分子间碰撞,则分子会发生离解变为单原子: N2+Ud——>N+N       其中  Ud为离解能
温度再升高,原子会发生电离:  N+Ui——>N++e     其中  Ui为电离能
气体电离后,在空间不仅有原子,还有正离子和自由电子,这种状态就叫等离子体。

     等离子体可分为三大类:①高温高压等离子体,电离度100%,温度可达几亿度,用于核聚变的研究;②低温低压等离子体,电离度不足1%,温度仅为50~250度;③高温低压等离子体,约有1%以上的气体被电离,具有几万度的温度。离子、自由电子、未电离的原子的动能接近于热平衡。热喷涂所利用的正是这类等离子体。

<2>喷涂原理:
等离子喷涂原理

     等离子喷涂是利用等离子弧进行的,离子弧是压缩电弧,与自由电弧项比较,其弧柱细,电流密度大,气体电离度高,因此具有温度高,能量集中,弧稳定性好等特点。

按接电方法不同,等离子弧有三种形式:

    ①非转移弧:指在阴极和喷嘴之间所产生的等离子弧。这种情况正极接在喷嘴上,工件不带电,在阴极和喷嘴的内壁之间产生电弧,工作气体通过阴极和喷嘴之间的电弧而被加热,造成全部或部分电离,然后由喷嘴喷出形成等离子火焰(或叫等离子射流)。等离子喷涂采用的就是这类等离子弧。

    ②转移弧:电弧离开喷枪转移到被加工零件上的等离子弧。这种情况喷嘴不接电源,工件接正极,电弧飞越喷枪的阴极和阳极(工件)之间,工作气体围绕着电弧送入,然后从喷嘴喷出。

等离子切割,等离子弧焊接,等离子弧冶炼使用的是这类等离子弧。

    ③联合弧:非转移弧引燃转移弧并加热金属粉末,转移弧加热工件使其表面产生熔池。这种情况喷嘴,工件均接在正极。

等离子喷焊采用这种等离子弧。

    进行等粒子喷涂时,首先在阴极和阳极(喷嘴)之间产生一直流电弧,该电弧把导入的工作气体加热电离成高温等离子体,并从喷嘴喷出,形成等离子焰,等离子焰的温度很高,其中心温度可达30000°k,喷嘴出口的温度可达

;  15000~20000°k。焰流速度在喷嘴出口处可达1000~2000m/s,但迅衰减。粉末由送 粉气送入火焰中被熔化,并由焰流加速得到高于150m/s的速度,喷射到基体材料上形成膜。

 等离子焰流温度分布

<3>等离子喷涂设备:等离子喷涂设备主要包括:
①喷枪:实际上是一个非转移弧等离子发生器,是最关键的部件,其上集中了整个系统的电,气,粉,水等。
②电源:用以供给喷枪直流电。通常为全波硅整流装置。
③送粉器:用来贮存喷涂粉末并按工艺要求向喷枪输送粉末的装置。
④热交换器:主要用以使喷枪获得有效的冷却,达到使喷嘴延寿的目的。
⑤供气系统:包括工作气和送粉气的供给系统。
⑥控制框:用于对水,电、气、粉的调节和控制。

<4>等离子喷涂工艺:

在等离子喷涂过程中,影响涂层质量的工艺参数很多,主要有:

   ①等离子气体:气体的选择原则主要根据是可用性和经济性,N2气便宜,且离子焰热焓高,传热快,利于粉末的加热和熔化,但对于易发生氮化反应的粉末或基体则不可采用。Ar气电离电位较低,等离子弧稳定且易于引燃,弧焰较短,适于小件或薄件的喷涂,此外Ar气还有很好的保护作用,但Ar气的热焓低,价格昂贵。

    体流量大小直接影响等离子焰流的热焓和流速,从而影响喷涂效率,涂层气孔率和结合力等。流量过高,则气体会从等离子射流中带走有用的热,并使喷涂粒子的速度升高,减少了喷涂粒子在等离子火焰中的“滞留”时间,导致粒子达不到变形所必要的半熔化或塑性状态,结果是涂层粘接强度、密度和硬度都较差,沉积速率也会显著降低;相反,则会使电弧电压值不适当,并大大降低喷射粒子的速度。极端情况下,会引起喷涂材料过热,造成喷涂材料过度熔化或汽化,引起熔融的粉末粒子在喷嘴或粉末喷口聚集,然后以较大球状沉积到涂层中,形成大的空穴。

②电弧的功率:

 电弧功率太高,电弧温度升高,更多的气体将转变成为等离子体,在大功率、低工作气体流量的情况下,几乎全部工作气体都转变为活性等粒子流,等粒子火焰温度也很高,这可能使一些喷涂材料气化并引起涂层成分改变,喷涂材料的蒸汽在基体与涂层之间或涂层的叠层之间凝聚引起粘接不良。此外还可能使喷嘴和电极烧蚀。

   而电弧功率太低,则得到部分离子气体和温度较低的等离子火焰,又会引起粒子加热不足,涂层的粘结强度,硬度和沉积效率较低。

③供粉

   供粉速度必须与输入功率相适应,过大,会出现生粉(未熔化),导致喷涂效率降低;过低,粉末氧化严重,并造成基体过热。
 送料位置也会影响涂层结构和喷涂效率,一般来说,粉末必须送至焰心才能使粉末获得最好的加热和最高的速度。

④喷涂距离和喷涂角

 喷枪到工件的距离影响喷涂粒子和基体撞击时的速度和温度,涂层的特征和喷涂材料对喷涂距离很敏感。
喷涂距离过大,粉粒的温度和速度均将下降,结合力、气孔、喷涂效率都会明显下降;过小,会使基体温升过高,基体和涂层氧化,影响涂层的结合。在机体温升允许的情况下,喷距适当小些为好。

  喷涂角:指的是焰流轴线与被喷涂工件表面之间的角度。该角小于45度时,由于“阴影效应”的影响,涂层结构会恶化形成空穴,导致涂层疏松。

⑤喷枪与工件的相对运动速度

 喷枪的移动速度应保证涂层平坦,不出线喷涂脊背的痕迹。也就是说,每个行程的宽度之间应充分搭叠,在满足上述要求前提下,喷涂操作时,一般采用较高的喷枪移动速度,这样可防止产生局部热点和表面氧化。

⑥基体温度控制

 较理想的喷涂工件是在喷涂前把工件预热到喷涂过程要达到的温度,然后在喷涂过程中对工件采用喷气冷却的措施,使其保持原来的温度。

 近几年来,在等离子喷涂的基础上又发展了几种新的等离子喷涂技术,如:

3.真空等离子喷涂(又叫低压等离子喷涂)

 真空等离子喷涂是在气氛可控的,4~40Kpa的密封室内进行喷涂的技术。

 因为工作气体等离子化后,是在低压气氛中边膨胀体积边喷出的,所以喷流速度是超音速的,而且非常适合于对氧化高度敏感的材料。

4.水稳等离子喷涂

 前面说的等离子喷涂的工作介质都是气体,而这种方法的工作介质不是气而是水,它是一种高功率或高速等离子喷涂的方法,其工作原理是:

 喷枪内通入高压水流,并在枪筒内壁形成涡流,这时,在枪体后部的阴极和枪体前部的旋转阳极间产生直流电弧,使枪筒内壁表面的一部分蒸发、分解,变成等离子态,产生连续的等离子弧。由于旋转涡流水的聚束作用,其能量密度提高,燃烧稳定,因此,可喷涂高熔点材料,特别是氧化物陶瓷,喷涂效率非常高。

等离子清洗机

为了更好地服务于客户,深圳哈利森与德国公司oksun共同在深圳建立等离子表面处理设备演示中心,安装了CD400型等离子便面处理设备,为客户提供等离子表面处理设备的技术咨询、样品测试和产品代工服务。 oksun是是最早生产并研发低压气体等离子表面处理设备的公司之一。可以提供多种型号的气体等离子表面处理设备,包括用于实验室和科研的小型设备和工业用途的大中型设备,主要应用于以下领域: 金属: 各种金属及陶瓷的表面处理,代替了传统的三氯化物化学处理方式。 汽车制造: 用于汽车制造过程中的塑料(如车门、保险杠)和喷漆、植绒前处理。 纺织品生产: 用于纺织品、滤网和薄膜的亲水性、疏水性和表面改性处理。 医疗: 用于玻璃导管、注射器、导尿管和各种阀门的胶合前处理。 航空航天: 绝缘材料(泡沫)、精密电子元器件等的表面处理。 电子: 线路板的清洗和蚀刻;半导体封装前处理;手机天线粘接前处理;LED贴片前处理。

 等离子清洗设备的前景如何?

等离子清洗设备的前景如何呢?带着这个问题我们来看:目前用途之广也是大家所见到的,汽车行业,印刷行业等等。

 等离子体的发生和对材料的处理效果与以下几个方面相关。

第一:气体流量:工艺舱体压力与气流速度、产品排气率和泵速成函数关系。舱体内气体接入量的不同,造成产生等离子体的密度不同,从而影响处理效果。超声波震板。

 第二:功率:通过提高等离子处理的功率,可增加等离子体的密度和能量,从而加快等离子处理的速度。等离子体密度是单位体积内所包含的等离子体的数量。等离子体能量定义了等离子体进行表面物理轰击的能力。震空清洗机生产商。

第三:时间:工艺时间的长短与功率、气体流量和气体类型相关。以在 45/0基板上提高引线的键合能力为例,一个短时间的等离子处理,引线的键合强度相对于未处理前只提高了 .6;但是将处理时间增加 (7),引线的键合强度将比未处理前提高 .$6。这里应该指出的是,过长的工艺时间并不总是可以提高材料的表面活性。从提高生产效率这方面出发,还应尽量减少工艺时间,这在大批量生产中尤为重要。螺母自动埋植机。

第四:工艺气体:一般在等离子清洗中,可把活化气体分为两类,一类为惰性气体的等离子体(如 01.,2.等);另一类为反应性气体的等离子体(如 3.,&.、含氟气体等)。以氩等离子为例,在一个物理过程中,在氩等离子中产生的离子会以足够的能量辐射表面,去掉表面污物。带正电的氩等离子将被吸引到在真空舱体的负极板。由于高能等离子撞击,撞击力足以去除表面上的任何污垢,随后污垢通过真空泵以气体形式排出。超声波发生器。

 

等离子清洗机可以改变材料表面的性能吗?

在特定情况下,等离子清洗机可以改变材料的表面性质吗? 基于被用于产生等离子体的处理气体,等离子处理可改变材料的表面化学。因此能改变材料的表面性质。例如,大气或是氧气等离子体常用在聚合物(例如 聚苯乙烯, 聚乙烯)表面产生羟基。通常改变表面从疏水性(高水接触角)为亲水性(水接触角小于30度),并增加表面润湿性能。等离子处理也能改变其它材料的表面化学(表面性质),如硅、不锈钢及玻璃。

 

等离子清洗纤维能提高纤维表面的性能吗?

应用于等离子清洗纤维表面,从而改变纤维表面性质,提高纤维的性能。用于改性的科学研究。总体而言,我们的等离子清洗机用于纤维表面的等离子改性。等离子体处理可用于结构性纤维如碳纤维、凯夫拉、聚乙烯纤维等的纤维表面化学性能的改性,以此提高粘附与纤维增强复合材料中基质的特性。等离子体处理也应用于组织工程学及生物医学等。等离子体处理可提高纤维表面的亲水性。下面是资料是研究人员使用我们的等离子体处理仪应用于纤维改性方面的技术参考资料。

 等离子清洗机清洗聚合物时为什么会有烟冒出?

据使用者描述,一台2003年购进的扩展型等离子清洗机在清洗约20nm厚的聚合物运行40分钟后,一股白色烟气从反应舱冒出;该气体非常刺激且有毒。首先确认白色烟气是从反应舱而非从等离子清洗机本身窜出。如果等离子清洗处于开机状态、真空泵关闭、反应舱开启、舱内无样本时,白色氧气是从等离子清洗机机箱内出来的吗?如果是,这说明有电子故障及可能有电子部件烧毁。如果不是,则是其它问题。使用者未说明处理其实是什么。该种气体可能导致白烟的产生?假如电子部件完好,如果开启清洗机及真空泵,而样本未放入舱内还有白烟出现吗?如果还冒出白烟,可能是沉积在反应舱和舱门内壁的污物,这些污物需要用异丙醇或类似去污剂去除。如果等离子清洗机在真空状态下运转,而产生等离子,任何的气体或污物应该席卷反应舱;真空管,真空排气口处有由于抽气而产生的烟气吗?而不是等离子清洗机本身?如果看见真空泵排气口处有白色烟气,这可能是从泵里面排除的油雾,与等离子清洗机本身没任何关系;这个问题可通过更换适当的油雾过滤器来解决.

等离子清洗机与客户自备泵的适用性

清洗机与客户自备真空泵的适用性我们的等离子清洗机需要最小抽气速度为1.4 m3/hour (23 L/min),能达到的极限压力为200 mTorr (0.27 mbar)或小于该值,等离子清洗机的反应舱后部玻璃柄的外径为0.5" (12.7mm)。可能采用一个内径为0.5" (12.7mm)的真空管及适用的转换头与真空进气口连接更容易点。

 等离子清洗机清洗氧化物

离子清洗机能产生氧气等离子体吗?在这种情况下,能在氧化物表面产生羟基或羧基吗?处理气体是氧气还是臭氧?等离子清洗机能产生氧气等离子体。氧气等离子体能在材料表面产生羟基。你需要使用氧气作为处理气体来产生氧气等离子体。实际上等离子体产生的时候,一些臭氧也产生了,但是等离子体中的主要活性粒子为原子氧及离子化氧。其它类型的气体可能需要用来在样本表面产生羟基,这个要看等离子处理的具体氧化物是什么。

 等离子清洗机可以清洗浸泡在高分子泵油中的K9光学玻璃吗?

问题: 等离子体清洗机可以清洗浸泡在高分子泵油中的K9光学玻璃吗?

回复: 当大气或氧气作为处理气体时,等离子体清洗设备清洗有机薄膜(如光刻胶、碳氢油)的蚀刻速度为10 nm/min。如果需要清洗的污染物的厚度超过1微米,我们建议采用2个步骤来清洗:首先采用湿法化学清洗;然后使用等离子体清洗机清洗纳米级的污物。这样可以避免在使用氧气作为处理气体时,油滴残留在清洗机反应舱内导致安全隐患。另外需要配备一台能抽氧气的真空泵。

 等离子清洗机是否可以提高手机表面的张力及粘附力

回复:等离子体处理可以提供塑料表面的粘附力,通过去除有机污染物,在表面介入极性有机官能团,提高表面亲水性及表面润湿性能。干净的表面及表面润湿性能对于两个表面的牢固粘结都是起到非常关键的作用。表面润湿性能所能达到的程度取决于塑料本身及其塑料所有粘结材料的表面情况,这些也与手机外壳材料、胶水等都有关系。

 什么是等离子体?

   等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态 的原子或分子以及光子。事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。

等离子体的分类

1、按等离子体焰温度分:

(1)高温等离子体:温度相当于108~109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。
(2)低温等离子体:

热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。
冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电 等离子体等。

2、按等离子体所处的状态:
(1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。

(2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。

 等离子清洗机结构及工作原理的研究

1 离子清洗机/等离子清洗设备的基本构造

根据用途的不同,可选用多种构造的等离子清洗设备,并可通过选用不同种类的气体,调整装置的特征参数等方法使工艺流程实现最佳化,但等离子体清洗装置的基本结构大致是相同的,一般装置可由真空室、真空泵、高频电源、电极、气体导入系统、工件传送系统和控制系统等部分组成。通常使用的真空泵是旋转油泵,高频电源通常用13.56M赫兹的无线电波,设备的运行过程如下:
(1)被清洗的工件送入真空室并加以固定,启动运行装置,开始排气,使真空室内的真空程度达到10Pa左右的标准真空度。一般排气时间大约需要2min。
(2)向真空室引入等离子清洗用的气体,并使其压力保持在100Pa。根据清洗材质的不同,可分别选用氧气、氢气、氩气或氮气等气体。
 (3)在真空室内的电极与接地装置之间施加高频电压,使气体被击穿,并通过辉光放电而发生离子化和产生等离子体。让在真空室产生的等离子体完全笼罩在被处理工件,开始清洗作业。一般清洗处理持续几十秒到几分钟。
(4)清洗完毕后切断高频电压,并将气体及汽化的污垢排出,同时向真空室内鼓入空气,并使气压升至一个大气压。

2 等离子清洗的特点和优势

与湿法清洗相比,等离子清洗的优势表现在以下8个方面:

 (1)在经过等离子清洗以后,被清洗物体已经很干燥,不必再经干燥处理即可送往下道工序。
(2)不使用三氯乙甲ODS有害溶剂,清洗后也不会产生有害污染物,属于有利于环保的绿色清洗方法。
(3)用无线电波范围的高频产生的等离子体与激光等直射光线不同,它的方向性不强,因此它可以深入物体的微细孔眼和凹陷的内部并完成清洗任务,所以不必过多考虑被清洗物体形状的影响,而且对这些难清洗部位的清洗效果与用氟里昂清洗的效果相似甚至更好。
(4)整个清洗工艺流程在几分钟即可完成,因此具有效率高的特点。
(5)等离子清洗需要控制的真空度约为100Pa,这种真空度在工厂实际生产中很容易实现。这种装置的设备成本不高,加上清洗过程不需要使用价格昂贵的有机溶剂,因此它的运行成本要低于传统的清洗工艺。
(6)由于不需要对清洗液进行运输、贮存、排放等处理措施,所以生产场地很容易保持清洁卫生。
(7)等离子清洗的最大技术特点是:它不分处理对象,可处理不同的基材,无论是金属、半导体、氧化物还是高分子材料(如聚丙烯、聚氯乙烯、据四氟乙烯、聚酰亚胺、聚酯、环氧树脂等高聚物)都可用等离子体很好地处理,因此,特别适合不耐热和不耐溶剂的基底材料。而且还可以有选择地对材料的整体、局部或复杂结构进行部分清洗。(8)在完成清晰去污的同时,还能改变材料本身的表面性能,如提高表面的润湿性能,改善膜的附着力等,这在许多应用中都是非常重要的。

3 离子清洗机/等离子清洗设备的原理理论分析

我们先简单的定义什么是等离子体,等离子体是一团含有正离子、电子、自由基及中性气体原子所组成的会发光的气体团,如日光灯、霓红灯发亮的状态,就是属于等离子体发亮的状态。等离子体的产生最主要是靠电子去撞击中性气体原子,使中性气体原子解离而产生等离子体,但中性气体原子核对其外围的电子有一束缚的能量,我们称它为束缚能,而外界的电子能量必须大于此束缚能,才会有能力解离此中性气体原子,但是,此外界的电子往往是能量不足的,没有解离中性气体原子的能力,所以,我们必须用外加能量的方法给原子电子能量,使电子有利用解离此中性气体原子。要外加能量给电子,最简单的方法就是用平行电极板加一直流电压,电子在电极中,会被带正电的电极所吸引而加速,在加速的过程中电子可以累积能量,当电子的能量达到某一程度时,就有能力来解离中性气体原子,能产生高密度等离子体的方法有很多种,在此我们简单的介绍一些能产生高密度等离子体的方法。

3.1 感应偶合式等离子体产生法(ICP)

感应偶合式等离子体与(Inductively-Couplede-Plasma,ICP)的工作原理,就是在线圈上加上一个高频电源,当线圈上的电流改变时,就可有安培定律知道,当感应产生一变动磁场,同时可由法拉第定律知道此变动之磁场会感应出一个反应方向的电场,此电场会加速等离子体中的电子而形成一线圈电流相反的二次电流。并且随着与加于线圈上的电流不断改变,而感应出的电场也不断改变,这不断改变电场与平板式高调波等离子体一样能用来加速电子以维持等离子体,所不同的是电场与电极方向不同。在平板式高调波等离子体中电子受电场影响而运动方向垂直于电极,所以会有许多电子逃离等离子体跑到电极上,使能量消耗在加热电极上,而在感应偶合式等离子中,电子受感应电场的影响而使运动方向与电极平行,因此不会有太多的电子损耗在电极上,固可以维持线圈周围相当高的电子密度。 ICP的主要优点为:

(1)等离子体密度高、解离率高,能够在相当大的压力范围上保持高密度等离子体。
    (2)平板式ICP可大面积操作。
    (3)ICP等离子体中的电子温度低、离子动能低、等离子体电位低。
    (4)等离子体密度及离子转击基板的动能可分开控制。
    (5)设备简单。

但其唯一的缺点为线圈电极可能被离子打出而污染镀膜品质,一般改善的方法有:

(1)将线圈电极的一端接地以降低线圈电极之电位,即减少电容效应。

(2)并联一直流电压以防止离子转击。

(3)可使用法拉第屏蔽(Faraday''s shielding)以消除电容效应。

(4)将线圈以介电材料被覆(coating)以降低等离子体电位。

3.2 阴极等离子体产生法(HCF)

在一金属管装物,可为圆形、方形、椭圆形或其他形状,在外加一高调波在此管状物上,会产生一个自我偏压,故造成整支管子都是带一偏压,这使得电子无论是往哪一方向作运动,都会被排斥,所以,电子在管内会作来回振荡的运动,固电子在碰撞到电极板前,能走更长的距离,这就是表示电子会有更多的机会或几率与中性气体原子产生碰撞,从而产生等离子体。

3.3 电子回旋共振电浆产生法(ECR)

此为微波(Microwave)与磁场共同组合的一种等离子体产生法,电子在磁场中会作旋转的运动,当磁场强度越来越强时,电子旋转的速度会越快,在磁场强度为875GA/m时,电子旋转的频率为2.45G赫兹,此频率恰巧为微波的频率,因频率相近而产生共振,此共振现象就有利于电子吸收微波的能量,因拥有较高能量的电子,这将有助于等离子体的产生。

3.4 电容耦合式与感应耦合式离子体的差异性能比较

传统型的离子设备一般又称电容耦合等离子机(capacitor coupled plasma,CCP或CP)或电场耦合式等离子机(electric field coupled plasma),因为两电极间所形成电容之间产生电场的等效电路故称之。这种电容式的等离子体系统虽行之有年,却有其据点存在,当粒子被RF电场加速时,其粒子顺着电场方向来回碰撞,因此造成两个问题,一为粒子因向上下电机板加速产生碰撞造成动能的损耗,二为由于晶片通常置于其中一电极,在粒子向两极加速的中过程中,易于对晶片上的元件造成损伤,又由于粒子动能的损耗使得电浆的效率无法提高,因此其密度只能维持在109ion/cm3的数量级,因此电容式电浆用于蚀刻时,基本上是具有物物理蚀刻和化学蚀刻双重作用的合成,限于等离子体密度无法提高,单位面积内的活化离子数目以及化学蚀刻反应也受到了带电粒子数目的限制,在低压状况下(1.333mPa以下),由于离子数目过低而造成等离子体无法维持的状况,因此电容耦合式电浆很难用于低压下蚀刻而且也不是很有效率,为了避免此一困扰,使用者将制成的压力提高到及几毫帕或几十豪帕的范围,此压力范围若应用于CVD就很好,但是若应用于蚀刻就会产生等向蚀刻的效应,此效应和化学蚀刻并没有太大差别,因为在此压力范围内,粒子的mean free-path已小到0.1mm以下,粒子进入晶片表面法向分量与切向分量已没任何差别。因此其纵向蚀刻速率与横向蚀刻速率几近相等,即所谓的"等向蚀刻"。

20世纪80年代末期,出现了磁场耦合方式的等离子体,或称感应耦合式(Inductively Coupled Plasma,ICP)在特性上取代了电场耦合方式(即电容式等离子体),该种等离子体在结构上由电感产生感应磁场,再利用此磁场产生感应而得到二次感应而得到二次感应电流环绕此磁场,由于此结构类似变压器原理,因此又称之为变压器耦合待离子体(transformer coupled plasma)此结构的优点在于带电粒子功能损耗的缺点而使得效率大大提升,借而提升电浆密度,更有利的一点是因为粒子的加速方向平行于晶牌片表面的切线方向,因此不至于造成对元件的损伤,这种封闭式的加速路径使得粒子之间的碰撞几率大大增加,因此,磁场耦合式等离子体的密度高达1011-1013ion/cm3数量级。更重要的一点是由于其效率高、密度大,等离子体在压力低于0.133mPa以下的范围仍可维持1011-1013ion/cm2的数量级。由于此一优点,等离子体系统的工作压力可以延伸到0.133mpa以下,低工作压力得好处在于粒子的mean -free-path大,借由偏移压场可以辅助带电粒子向晶片的入射方向,不致因受到太多的碰撞而产生散射效应,此入射方向决定蚀刻角度的关键参数。在0.133-1.133mPa的压力范围下操作,其蚀刻角度可以到近于90度的垂直效果,此乃高密度等离子体的重要特性之一。

3.5 等离子清洗机 机理分析

电浆与材料表面可产生的反应主要有两种,一种是靠自由基来做化学反应,另一种则是靠等离子作物理反应,以下将作更详细的说明。

(1)化学反应(Chemical reaction)

在化学反应里常用的气体有氢气(H2)、氧气(O2)、甲烷(CF4)等,这些气体在电浆内反应成高活性的自由基,这些自由基会进一步与材料表面作反应。其反应机理主要是利用等离子体里的自由基来与材料表面做化学反应,在压力较高时,对自由基的产生较有利,所以若要以化学反应为主时,就必须控制较高的压力来近进行反应。

(2)物理反应(Physical reaction)

主要是利用等离子体里的离子作纯物理的撞击,把材料表面的原子或附着材料表面的原子打掉,由于离子在压力较低时的平均自由基较轻长,有得能量的累积,因而在物理撞击时,离子的能量越高,越是有的作撞击,所以若要以物理反应为主时,就必须控制较的压力下来进行反应,这样清洗效果较好。

 

等离子清洗机的技术原理

什么是等离子体

等离子体是物质的一种存在状态,通常物质以固态、业态、气态3种状态存在,但在一些特殊的情况下可以以第四中状态存在,如太阳表面的物质和地球大气中电离层中的物质。这类物质所处的状态称为等离子体状态,又称位物质的第四态。

等离子体中存在下列物质。处于高速运动状态的电子;处于激活状态的中性原子、分子、原子团(自由基);离子化的原子、分子;分子解离反应过程中生成的紫外线;未反应的分子、原子等,但物质在总体上仍保持电中性状态。

2 如何用人工方法制得等离子体

除了在自己已存在的等离子体以外,用人工方法在一定范围内也可以制得等离子体。最早是在1927年,当水银蒸气在高压电场中的放电时由科研人员发现等离子体。后面的发现是通过多种形式,如电弧放电、辉光放电、激光、火焰或者冲击波等,都可以使处于低气压状态的气体物质转变成等离子体状态。

如在高频电场中处于低气压状态的氧气、氮气、甲烷、水蒸气等气体分子在辉光放电的情况下,可以分解出加速运动的原子和分子,这样产生的电子和解离成点有正、负电荷的原子和分子。这样产生的电子在电场中加速时会获得高能量,并与周围的分子或原子发生碰撞,结果使分子和原子中又激发出电子,而本身又处于激发状态或离子状态,这时物质存在的状态即为等离子体状态。在一般资料中常可以见到用下述反应式表述的等离子体形成过程。

如氧气等离子体形成过程即可用下列6个反应式来表示:

第一个反应式表示氧气分子在得到外界能量后变成氧气阳离子,并放出自由电子过程,第二个反应式表示氧气分子在得到外界能量后分解形成两个氧原子自由基的过程。第三个反应式表示氧气分子在具有高能量的激发态自由电子作为下转变成激发态。第四第五反应式则表示激发态的氧气分子进一步发生转变,在第四个反应式中,氧气饿饭脑子回到通常状态的同时发出光能(紫外线)。在第五个反应式中,激发态的氧气分子分解成两个氧原子自由基。第六个反应式表示氧气分子在激发态自由电子的作用下,分解成氧原子自由基和氧原子阳离子的过程,当这些反应连续不断发生,就形成氧气等离子体,其他气体的等离子体的形成过程也可用相似的反应式描述。当然实际反应要比这些反应式描述的更为复杂。

 3 等离子体的种类

(1)低温和高温可分为高温等离子体和低温等离子体两类,在等离子体中,不同微粒的温度实际上是不同的,所具有的温度是与微粒的动能即运动速度质量有关,把等离子体中存在的离子的温度用Ti表示,电子的温度用Te表示,而原子、分子或原子团等中性粒子的温度用Tn表示,对于Te大大高于Ti和Tn的场合,即低压体气的场合,此时气体的压力只有几百个帕斯卡,当采用直流电压或高频电压做电场时,由于电子本身的质量很小,在电池中容易得到加快,从而可获得平均可达数电子伏特的高能量,对于电子,此能量的对应温度为几万度(K),而弟子由于质量较大,很难被电场加速,因此温度仅几千度。由于气体粒子温度较低(具有低温特性),因此把这种等离子体称为低温等离子体。当气体处于高压状态并从外界获得大量能量时,粒子之间的相互碰撞频率大大增加,各种微粒的温度基本相同,即Te基本与Ti及Tn相同,我们把这种条件下得到的等离子体称为高温等离子体,太阳就是自己界中的高温等离子体。由于高温等离子体对物体表面的作用过于强强烈,因此在实际应用中很少使用,目前投入使用的只有低温等离子体,因为在本文中将低温等离子体简称为等离子体,希望不会引起读者误解。

(2)活泼气体和不活泼气体等离子体,根据产生等离子体时应用的气体的化学性质不同,可分为不活泼气体等离子体和活泼气体等离子体两类,不活泼气体如氩气(Ar)、氮气(N2)、氟化氮(NF3)、四氟化碳(CF4)等,活泼气体如氧气(O2)、氢气(H2)等,不同类型的气体在清洗过程中的反应机理是不同的,活泼气体的等离子体具有更强的化学反应活性,这将在后面结合具体应用实例介绍。

4 等离子体与物体表面的作用

在等离子体中除了气体分子、离子和电子外,还存在受到能量激励状态的电中性的原子或原子团(又成自由基),以及等离子体发射出的光线,其中波的长短、能量的高低在等离子体与物质表面相互作用时有着重要作用。

4.1 原子团等自由基与物体表面的反应

由于这些自由基呈电重型,存在寿命较长,而且在离子体中的数量多于离子,因此自由基在等离子体中发挥着重要作用,自由基的作用主要表现在化学反应过程中能量传递的"活化"作用,处于激发状态的自由基具有较高的能量,因此易于与物体表面分子结合时会形成新的自由基,新形成的自由基同样处于不稳定的高能量状态,很可能发生分解反应,在变成较小分子同时生成新的自由基,这种反应过程还可能继续进行下去,最后分解成水、二氧化碳之类的简单分子。在另一些情况下,自由基与物体表面分子结合的同时,会释放出大量的结合能,这种能量又成为引发新的表面反应推动力,从而引发物体表面上的物质发生化学反应而被去除。

4.2 电子与物体表面的作用

一方面电子对物体表面的撞击作用,可促使吸附在物体表面的气体分子发生分解和解吸,另一方面大量的电子撞击有利引起化学反应。由于电子质量极小,因此比离子的移动速度要快的多,当进行等离子体处理时,电子要比离子更早达到物体表面,并使表面带有负电荷,这有利于引发进一步反应。

4.3 离子与物体表面的作用

通常指的是带正电荷的阳离子的作用,阳离子有加速冲向带负电荷表面的倾向,此时使物体表面获得相当大的动能,足以撞击去除表面上附着的颗粒性物质,我们在这种现象称为溅射现象,而通过离子的冲击作用可极大促进物体表面化学反应发生的几率。

 4.4 紫外性与物体表面的反应

紫外性具有很强的光能,可使附着在物体表面物质的分子键发生断裂而分解,而且紫外线具有很强的穿透能力,可透过物体的表面深入达数微米而产生作用。

综上所述,可知等离子清洗是利用等离子体内的各种具有高能量的物质和活化作用,将附着在物体表面的污垢彻底剥离去除。

 

何为等离子处理机

等离子清洗机采用气体作为清洗介质,有效地避免了因液体清洗介质对被清洗物带来的二次污染。等离子清洗机外接一台真空泵,工作时清洗腔中的等离子体轻柔冲刷被清洗物的表面,短时间的清洗就可以使有机污染物被彻底地清洗掉,同时污染物被真空泵抽走,其清洗程度达到分子级。等离子清洗器除了具有超清洗功能外,在特定条件下还可根据需要改变某些材料表面的性能,等离子体作用于材料表面,使表面分子的化学键发生重组,形成新的表面特性。对某些有特殊用途的材料,在超清洗过程中等离子清洗器的辉光放电不但加强了这些材料的粘附性、相容性和浸润性,并可消毒和杀菌。等离子清洗器广泛应用于光学、光电子学、电子学、材料科学、生命科学、高分子科学、生物医学、微观流体学等领域。

等离子清洗机的应用,起源于20世纪初,随着高科技产业的快速发展,其应用越来越广,目前已在众多高科技领域中,居于关键技术的地位,等离子清洗技术对产业经济和人类文明影响最大,首推电子资讯工业,尤其是半导体业与光电工业。

等离子清洗机已应用于各种电子元件的制造,可以确信,没有等离子清洗机及其清洗技术,就没有今日这么发达的电子、资讯和通讯产业。此外,等离子清洗机及其清洗技术也应用在光学工业、机械与航天工业、高分子工业、污染防治工业和量测工业上,而且是产品提升的关键技术,比如说光学元件的镀膜、延长模具或加工工具寿命的抗磨耗层,复合材料的中间层、织布或隐性镜片的表面处理、微感测器的制造,超微机械的加工技术、人工关节、骨骼或心脏瓣膜的抗摩耗层等皆需等离子技术的进步,才能开发完成。

等离子技术是一新兴的领域,该领域结合等离子物理、等离子化学和气固相界面的化学反应,此为典型的高科技产业,需跨多种领域,包括化工、材料和电机,因此将极具挑战性,也充满机会,由于半导体和光电材料在未来得快速成长,此方面应用需求将越来越大。

 

等离子处理机的原理

何谓等离子清洗机

    等离子清洗机采用气体作为清洗介质,有效地避免了因液体清洗介质对被清洗物带来的二次污染。等离子清洗机外接一台真空泵,工作时清洗腔中的等离子体轻柔冲刷被清洗物的表面,短时间的清洗就可以使有机污染物被彻底地清洗掉,同时污染物被真空泵抽走,其清洗程度达到分子级。等离子清洗器除了具有超清洗功能外,在特定条件下还可根据需要改变某些材料表面的性能,等离子体作用于材料表面,使表面分子的化学键发生重组,形成新的表面特性。对某些有特殊用途的材料,在超清洗过程中等离子清洗器的辉光放电不但加强了这些材料的粘附性、相容性和浸润性,并可消毒和杀菌。等离子清洗器广泛应用于光学、光电子学、电子学、材料科学、生命科学、高分子科学、生物医学、微观流体学等领域。

等离子清洗机的应用,起源于20世纪初,随着高科技产业的快速发展,其应用越来越广,目前已在众多高科技领域中,居于关键技术的地位,等离子清洗技术对产业经济和人类文明影响最大,首推电子资讯工业,尤其是半导体业与光电工业。

等离子清洗机已应用于各种电子元件的制造,可以确信,没有等离子清洗机及其清洗技术,就没有今日这么发达的电子、资讯和通讯产业。此外,等离子清洗机及其清洗技术也应用在光学工业、机械与航天工业、高分子工业、污染防治工业和量测工业上,而且是产品提升的关键技术,比如说光学元件的镀膜、延长模具或加工工具寿命的抗磨耗层,复合材料的中间层、织布或隐性镜片的表面处理、微感测器的制造,超微机械的加工技术、人工关节、骨骼或心脏瓣膜的抗摩耗层等皆需等离子技术的进步,才能开发完成。

等离子技术是一新兴的领域,该领域结合等离子物理、等离子化学和气固相界面的化学反应,此为典型的高科技产业,需跨多种领域,包括化工、材料和电机,因此将极具挑战性,也充满机会,由于半导体和光电材料在未来得快速成长,此方面应用需求将越来越大

 

粉状样板处理

如何处理粉状样本?

如需处理粉状样本,有必要在真空泵前段安装一个进气集尘器,防止粉粒进入真空泵内部,导致真空泵损坏。

气体混合器可以同时混合几种气体

我们打算使用氧气、氮气或氩气作为处理气体;真空泵能与这些气体相容吗?气体混合器可同时混合几种气体?

氧气泵适合抽氧气、大气、氮气、氩气和其他不反应气体。如果客户对使用其它处理气体感兴趣,请联系我们。

气体混合器有两个进气口和流量表,允许混合两种处理气体。

 

等离子处理时温度的控制

在等离子处理时,能否控制温度?有配件可选吗?

我们没有在等离子处理时控制温度的选配件。当处理非导体时,电介质材料(玻璃或聚合物)材料处于室温状态。当处理导电材料(金属),材料会被稍微加热,因为射频场(诱导加热)的电感耦合。在RF档位处于最高时,大约5分钟的等离子处理后,材料的温度会有5摄氏度的升高。升温并不明显,但取决于RF功率设置及处理时间。

分享给身边的朋友
资讯推荐
又一个医改模式或将全国推行!

又一个医改模式或将全国推行!

审查太严 第二波药店上市潮退了?

审查太严 第二波药店上市潮退了?

2018年,人工智能将如何通过医疗保健影响人类的生活?

2018年,人工智能将如何通过医疗保健影响人类的生活?

医疗器械注册核查为何通过难?建好质量管理体系才能闯过上市最后一道关

医疗器械注册核查为何通过难?建好质量管理体系才能闯过上市最后一道关

健康医疗大数据中心第二批国家试点启动

健康医疗大数据中心第二批国家试点启动

资讯排行